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Massively parallel DNA sequencing technologies are revolutioniz-
ing genomics by making it possible to generate billions of
relatively short (∼100-base) sequence reads at very low cost.
Whereas such data can be readily used for a wide range of bio-
medical applications, it has proven difficult to use them to gener-
ate high-quality de novo genome assemblies of large, repeat-rich
vertebrate genomes. To date, the genome assemblies generated
from such data have fallen far short of those obtained with the
older (but much more expensive) capillary-based sequencing ap-
proach. Here, we report the development of an algorithm for ge-
nome assembly, ALLPATHS-LG, and its application to massively
parallel DNA sequence data from the human and mouse genomes,
generated on the Illumina platform. The resulting draft genome
assemblies have good accuracy, short-range contiguity, long-range
connectivity, and coverage of the genome. In particular, the base
accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5
Mb for human and 7.2 Mb for mouse) approach those obtained
with capillary-based sequencing. The combination of improved
sequencing technology and improved computational methods
should now make it possible to increase dramatically the de
novo sequencing of large genomes. The ALLPATHS-LG program
is available at http://www.broadinstitute.org/science/programs/
genome-biology/crd.

The high-quality assembly of a genome sequence is a critical
foundation for understanding the biology of an organism, the

genetic variation within a species, or the pathology of a tumor.
High-quality assembly is particularly challenging for large, repeat-
rich genomes such as those of mammals. Among mammals, “fin-
ished” genome sequences have been completed for the human
and the mouse (1, 2). However, for most large genomes, efforts
have focused on using shotgun-sequencing data to produce high-
quality draft genome assemblies—with long-range contiguity in
the range of 20–100 kb and long-range connectivity in the range of
10 Mb (e.g., refs. 3–5). Using traditional capillary-based se-
quencing, such assemblies have been produced for multiple
mammals at a cost of tens of million dollars each.
Recently, there has been a revolution in DNA sequencing

technology. New massively parallel technologies can produce
DNA sequence information at a per-base cost that is ∼100,000-
fold lower than a decade ago (6, 7). In principle, this should make
it possible to dramatically decrease the cost of generating high-
quality draft genome assemblies. In practice, however, this has
been difficult because the new technology produces sequencing
“reads” of only ∼100 bases in length (compared with >700 bases
for capillary-based technology). These shorter reads are also less
accurate. For both of these reasons, these data are more difficult
to assemble into long contiguous and connected sequence. Ex-
cellent de novo assemblies using massively parallel sequence data
have been reported for microbes with genomes up to 40 Mb (refs.
8–10 and many others). There have been some important pio-
neering efforts (11, 12) for large genomes, but they fall far short
of the high-quality draft sequences that can be obtained with
the earlier technology. Moreover, fundamental issues have been

raised about the quality of de novo assemblies that can be con-
structed from such data (13).
Here, we describe an algorithm and software package ALL-

PATHS-LG for de novo assembly of large (and small) genomes.
We demonstrate the power of the approach by applying it to
massively parallel sequence data generated from both the human
and the mouse genomes. The results approach the quality of as-
semblies obtainable with capillary-based sequencing in terms of
completeness, contiguity, connectivity, and accuracy. The un-
covered regions of the genome consist largely of repetitive se-
quences, with segmental duplications remaining a particularly
important challenge. The results indicate that it should be possi-
ble to generate high-quality draft assemblies of large genomes at
∼1,000-fold lower cost than a decade ago.

Results
Model for Input Data.De novo genome assembly depends both on
the computational methods used and on the nature and quantity
of sequence data used as input. For capillary-based sequencing,
genome scientists ultimately converged around a fairly standard
model, specifying the desired coverage from libraries of various
insert sizes. For massively parallel sequencing data, we specify
such a model in Table l.
We adopted this model for several reasons. First, it requires

constructing only a few libraries, reducing the laboratory burden
and the amount of DNA required. Second, the fragment library
has inserts that are short enough that the sequencing reads from
each end overlap by ∼20% and can be merged to create a single
longer “read”. (The current read length is ∼100 bases; as read
lengths increase, insert sizes should be∼1.8 times the read length.)
Third, we obtain long-range connectivity by using “jumping li-
braries” (in which the middle of the insert is removed, ref. 14)
because current technology cannot sequence fragments > ∼1 kb.
Our model sets a target of 100-fold sequence coverage (to

compensate for shorter reads and possibly nonuniform cover-
age), whereas the model for capillary sequencing required only
8- to 10-fold coverage. Despite using higher coverage, the pro-
posed model is dramatically cheaper because the per-base cost of
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massively parallel sequencing is ∼10,000-fold lower than the
current cost of capillary sequencing. [Coverage can be measured
in different ways. For Illumina sequencing, we define coverage in
terms of purity-filtered bases (ref. 6 and Table 2).]
We developed several laboratory techniques for making the

libraries (see SI Materials and Methods for details): (i) For frag-
ments, we adapted existing protocols with the goal of improving
the representation of high GC-content DNA; (ii) for short jumps
(∼3 kb), we used the Illumina protocol (6); (iii) for long jumps (∼6
kb), we used a protocol that we had previously developed, on the
basis of a protocol for the SOLiD sequencing platform that
involves circularization and EcoP15I digestion (7, 9); and (iv) for
Fosmid jumps (∼40 kb), we developed two methodologies,
“ShARC” and “Fosill” (described in SI Materials and Methods).

Sequencing Data. Using the model above, we generated sequence
data from human and mouse genomes (Table 2), using the Illu-
mina GAII andHiSeq sequencers (SIMaterials andMethods). For
the human, we sequenced the cell line GM12878 because it has
been extensively sequenced and analyzed as part of the 1000
Genomes Pilot Project (15). (The cell line GM12878 is from the
Coriell Institute. DNA from this cell line is denoted NA12878.)
For the mouse, we used C57BL/6J female DNA because it was

the strain used for the draft and finished sequences of the mouse
(2, 3). The data have been deposited in the NCBI Short Read Ar-
chive under study namesHuman_NA12878_Genome_on_Illumina
and Mouse_B6_Genome_on_Illumina.

ALLPATHS-LG Assembly Method. We next needed to develop algo-
rithms and a software package able to performdenovo assembly of
large mammalian genomes. For this purpose, we made extensive
improvements to our previous program ALLPATHS (9, 16),
which can routinely assemble small genomes. The improved pro-
gram is called ALLPATHS-LG and is freely available at http://
www.broadinstitute.org/science/programs/genome-biology/crd. We
outline some of the key innovations (for more details, see SI
Materials and Methods):

i) Handling repetitive sequences. Repetitive sequence is the
fundamental genomic feature that stymies assembly. We
adapted ALLPATHS-LG to be more resilient to repeats,
as follows. In its initial assembly representation (called a uni-
path graph), ALLPATHS collapses repeats of length ≥K,
where K is chosen to be short enough that overlaps of length
K between reads are abundant (16). In ALLPATHS-LG, we
are able to use a larger K (in this work 96) by performing an
initial step dubbed “read doubling,” in which the two end
sequences from a fragment are pasted together provided
that the overlap between them is confirmed by another read
pair or if that read pair fills in a gap (Fig. S1A). A given pair
can have more than one such completion, as could happen,
for example, if a single-nucleotide polymorphism (SNP)
were to fall between the two ends of a pair (Fig. S1B).

ii) Error correction (cf. ref. 17). We describe the ALLPATHS-
LG approach to error correction. For every 24-mer, the
algorithm examines the stack of all reads containing the
24-mer. Individual reads may be edited if they differ from

Table 1. Provisional sequencing model for de novo assembly

Libraries, insert types* Fragment size, bp Read length, bases Sequence coverage, × Required

Fragment 180† ≥100 45 Yes
Short jump 3,000 ≥100 preferable 45 Yes
Long jump 6,000 ≥100 preferable 5 No‡

Fosmid jump 40,000 ≥26 1 No‡

*Inserts are sequenced from both ends, to provide the specified coverage.
†More generally, the inserts for the fragment libraries should be equal to ∼1.8 times the sequencing read length.
In this way, the reads from the two ends overlap by ∼20% and can be merged to create a single longer read. The
current sequencing read length is ∼100 bases.
‡Long and Fosmid jumps are a recommended option to create greater continuity.

Table 2. Experimental data for human and mouse assemblies

Species Library type
No. of
libraries

DNA used,
μg

Mean size,
bp

Read
length

Sequence coverage, ×

Physical coverage, ×All PF Aligned Unique Valid

Human Fragment 1 3 155 101 51.9 41.8 38.4 37.9 36.5 27.8
Short jump 2 20 2,536 101 45.9 40.7 33.7 31.7 19.7 249.4
Fosmid jump 2 20 35,295 76* 5.3 4.0 3.0 0.4 0.3 49.5
Total 5 43 103.1 86.5 75.1 70.0 56.5 326.7

Mouse Fragment 1 3 168 101 58.6 53.1 49.6 46.6 45.3 37.6
Short jump 3 20 2,209 101 48.0 40.7 35.1 32.0 19.9 219.1
Long jump 5 50 7,532 26 13.5 9.3 9.2 5.5 2.9 408.3
Fosmid jump 1 30 38,453 76 1.4 1.1 1.1 0.1 0.1 23.1
Total 10 103 121.5 104.2 95.0 84.2 68.2 688.1

The data used as assembly input are shown. Tables S1 and S2 provide more detail. Library type: See Table 1. DNA used: Amount of DNA used as input to
library construction. For each genome and each library type, a single aliquot was used. DNA source for human: Coriell Biorepository, NA12878. DNA source for
mouse: Jackson Laboratory C57/BL6J (stock 000664). Size: Mean of observed fragment size distribution. Read length: Number of bases sequenced. The
exception is the long jump libraries prepared with the EcoP15I digestion, which yield 26 bases of genomic information; these inserts were sequenced to
36 bases and then trimmed to 26 bases. Sequence coverage: All reads were used in the assembly, but we describe their properties here via a series of nested
categories. All: Total number of bases in reads, divided by genome size, assumed to be the reference size of 3.10 Gb for human and 2.73 Gb for mouse. PF:
Coverage by purity-filtered (PF) reads. Aligned: Coverage by aligned PF reads. Unique: Coverage by aligned PF reads, exclusive of duplicates, which were
identified by concurrence of start and stop points of pairs on the reference. Valid: Coverage by unique pairs for which the fragment length was within 5 SDs
of the mean. Physical coverage: Total coverage by valid pairs and the bases between them.
*Reads from one library had length 76, and those from the other had length 101.
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the overwhelming consensus of the stack. If a given base on
a read receives conflicting votes (arising from membership
of the read in multiple stacks), it is not changed. This latter
step is designed to reduce the incidence of incorrect
error correction.

iii) Use of jumping data. Data from jumping libraries present
the challenge that the junction point of the jump will often
lie within one of the two reads. In addition, nonjumped
fragments can result in reads occurring in the reverse ori-
entation with respect to the genome (Fig. S2). Depending
on the read length, these events can occur in ≥50% of the
read pairs (Table 2). We designed ALLPATHS-LG so that
it could work with such data: It trims bases beyond putative
junction points and treats each read pair as belonging to
one of two possible distributions.

iv) Efficient memory usage. Because data sets for mammalian
genome assembly are large (∼3 × 109 reads) and any read
could a priori overlap any other read, many computations
require large amounts of data to be kept concurrently in
memory. For these reasons, algorithms that work for smaller
genomes, including Velvet (8) and earlier versions of ALL-
PATHS, cannot handle these large data sets. We engi-
neered ALLPATHS-LG to economize the data structures
and make efficient use of shared memory parallelization.
ALLPATHS-LG can assemble mammalian genomes on
commercial servers (Dell R815, 48 processors, 512 GB
RAM, $39,000), in a few weeks (3 wk for mouse, 3.5 wk
for human).

v) Low coverage regions. If reads were truly randomly distrib-
uted across the genome with the ∼100× average coverage
used here, bases with <10× coverage would be extremely
rare, occurring far less than once per mammalian genome.
In practice, however, recalcitrant sequence contexts (includ-
ing those with low and high GC content) do cause low
coverage (9, 18), sometimes even to zero. (For our human
sequence data, 0.07% of genome bases have zero coverage,
and the N50 covered stretch of bases with nonzero coverage
is 467 kb, whereas 0.3% of genome bases have <10× cov-
erage, and the N50 size of stretches covered to ≥10× cov-
erage is 75 kb.) In regions of very low coverage, overlaps
between reads may be short. In these cases, it is desirable to
use a smaller value of K within the region. Accordingly,
ALLPATHS-LG can use K as small as 15, but only where
reads have been bounded to lie within a short gap between
two other sequences. (Implementation of this step is dis-
cussed in SI Materials and Methods and Fig. S3.)

Uncertainty in Assemblies. The goal of assembly is to reconstruct
the genome as accurately as possible. For some loci, however,
the data may be compatible with more than one plausible an-
swer. Examples include the location of a SNP or of a long ho-
mopolymer run whose length cannot be perfectly resolved with
the available data. Rather than making an arbitrary choice (and
thus sometimes introducing errors), we designed ALLPATHS to
retain and reflect the alternatives. The algorithm creates an as-
sembly graph whose edges are sequences and whose branches
represent alternate choices.
Because such a graph could be extremely complicated

for a large genome and thus unusable by typical applications,
ALLPATHS-LG introduces a preliminary output format in which
alternatives are expressed “linearly,” e.g.,

. . .ATC{A,T}GGTTTTTTT{,T, TT}ACAC . . . .
This example exhibits both a SNP and a homopolymer of un-

certain length. The same information could be readily encoded as
a markup of the genome, for example via a “vcf” file [Variant call
format (vcf), http://vcftools.sourceforge.net/specs.html]. In prin-

ciple, other applications could exploit this information. In prac-
tice, this remains an important challenge for the field.
We note that the current version of ALLPATHS-LG captures

only single-base and simple sequence indel uncertainties. It
would thus be valuable to devise better ways to capture alter-
natives, many of which are still lost in the current ALLPATHS-
LG process, giving rise to errors. Moreover, it would be desirable
to assign probabilities to each alternative, reflecting their likeli-
hood of being present in the sample.

Human and Mouse Assemblies. The resulting genome assemblies
provide good coverage of the human and mouse genomes (Table
3). (In all our assembly analyses, we defined contig boundaries at
runs of one or more Ns and discarded contigs <1 kb. For the
SOAP mouse assembly, we observed that contig size could be
tripled by first deleting isolated Ns, and therefore we did this.) We
compared our ALLPATHS-LG assemblies to previously pub-
lished assemblies obtained with capillary-based sequencing (3, 19),
as well as with assemblies obtained with massively parallel se-
quencing data using the recently published program SOAPdenovo
(referred to here as SOAP, ref. 11). For human, we specifically
used the human assembly “YH” published by the authors of SOAP
(12). [Two human assemblies are presented in ref. 12, from the
Asian individual YH and an anonymous African. We chose the
YH assembly for comparison because it has greater contiguity.We
note that two de novo YH assemblies were available (one de-
posited at the National Center for Biotechnology Information,
GenBank accession no. ADDF010000000, and one at http://yh.
genomics.org.cn). We chose the latter because it has greater
contiguity (SI Materials and Methods).] For mouse, we ran the
program on our own data. [We also ran the program ABySS (21)
on our mouse data set, with assistance from its authors (see SI
Materials andMethods for details); however, the resulting scaffolds
had an N50 length of only 4 kb. We therefore excluded it from
further analyses.]

Human Genome. The ALLPATHS-LG assembly has an N50
contig length of 24 kb and scaffold length of 11.5 Mb. The
contiguity is >4-fold longer and connectivity is >25-fold longer
than obtained using the SOAP algorithm (5.5-kb contigs, 0.4-
Mb scaffolds).
Importantly, these metrics approach the results from capillary-

based sequencing (109-kb contigs, 17.6-Mb scaffolds).
For the ALLPATHS-LG assembly, the assembled sequence

contains 91.1% of the reference genome and 95.1% of the exonic
bases, and its scaffolds span all but 2.4% of the genome. In con-
trast, the SOAP assembly covers only 74.3% of the genome and
81.2% of exonic bases, and its scaffolds fail to capture 7% of the
genome. The coverage statistics for the ALLPATHS-LG assem-
bly are similar to those obtained for capillary-based sequencing
(96.2%, 96.2%, and 2.5%). The difference in genomic coverage is
largely attributable to repeat sequences (Table S3). Specifically,
68.3% of the sequence missing from the ALLPATHS-LG as-
sembly and present in the capillary-sequencing-based assembly
consists of LINE, SINE, and LTR retrotransposon elements.
These elements compose 45.1% of the genome.
The ALLPATHS-LG assembly also showed good short-range

and long-range accuracy, on the basis of comparison with finished
reference genomes. To assess short-range accuracy, we broke the
assembly into chunks of ∼1 kb and aligned these chunks to
a haploid NA12878 reference (noting that heterozygous sites
would count as errors half the time unless represented in the as-
sembly). We classified each chunk as being correctly assembled if
sequence differed by ≤1% and having a local assembly error if
sequence differed by >1%. We assessed the base accuracy by
measuring the number of errors in correctly assembled chunks.
The ALLPATHS-LG assembly has a base accuracy of 99.95%

(Q33). We could not assess the base accuracy of the SOAP or
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capillary-based assemblies, because we lack a finished reference
sequence for the individuals.
The ALLPATHS-LG assembly contained a local assembly

error in 3.5% of the 1-kb chunks (mean spacing between local
assembly errors of ∼29 kb). The capillary-based assembly has
essentially the same local accuracy at 4.1% (mean spacing of
∼24 kb), whereas the SOAP assembly has lower accuracy at 6.2%
(mean spacing of ∼16 kb). [When compared with a common
reference sequence (Genome Reference Consortium, GRC), the
respective local assembly error rates for the ALLPATHS-LG
and capillary-based assemblies are 4.0 and 4.1%, respectively.]
To assess long-range accuracy, we randomly selected short

sequences separated by 100 kb and determined whether their
distance and orientation were essentially the same in the refer-
ence. The ALLPATHS-LG assembly had long-range accuracy of
99.1%. This accuracy is slightly lower than the 99.7% for the
capillary-sequencing-based assembly, although this comparison is
not completely fair because the Sanger assembly was edited using

the NCBI reference sequence to correct misjoins. The long-
range accuracy of the SOAP assembly was very good (99.5%).

Mouse Genome. The results were broadly similar for the mouse
genome. The ALLPATHS-LG assembly has an N50 contig
length of 16 kb and scaffold length of 7.2 Mb. The contig size is
similar but the connectivity is >20-fold larger than that obtained
from the SOAP algorithm (16-kb contigs, 0.3-Mb scaffolds). Our
results again approach the published results from capillary-based
sequencing (25-kb contigs, 16.9-Mb scaffolds).
The ALLPATHS-LG assembly contains 88.7% of the genome

and 96.7% of exonic bases, and its scaffolds span all but 2.8% of
the genome. These percentages are not as good as those obtained
for capillary-based sequencing (94.2%, 97.3%, and 2.0%), with
the difference again largely attributable to repeats. The coverage,
however, is considerably better than that obtained with SOAP.
The ALLPATHS-LG assembly again shows good short-range

and long-range accuracy. Base accuracy is 99.97% (Q36), slightly
better than that of both the SOAP and the capillary-based as-

Table 3. Human and mouse assemblies

Assemblies:
Human Mouse

Assembly no.: 1 2 3 4 5 6
Sequence data: Illumina Illumina ABI3730 Illumina Illumina ABI3730
Program: ALLPATHS-LG SOAP Celera ALLPATHS-LG SOAP ARACHNE

Completeness
Covered, % 91.1 74.3 96.2 88.7 86.2 94.2
Captured, % 6.6 18.6 1.3 8.6 8.0 3.8
Uncaptured, % 2.3 7.0 2.5 2.7 5.7 2.0
Segmental duplication coverage, % 41.1 12.1 62.2 42.3 27.9 65.7
Exon bases covered, % 95.1 81.2 96.2 96.7 92.4 97.3

Continuity
Contig N50, kb 24 5.5 109 16 16 25
Scaffold N50, kb 11,543 399 17,646 7,156 340 16,871

Contig accuracy
Ambiguous bases, % 0.08 0 0 0.04 0 0
1-kb chunks vs. reference NA12878 GRC GRC GRC B6 B6 B6
(I) perfect 77.1 88.6 76.8 78.0
(II) ≤0.1% error rate 8.7 2.5 2.9 7.0
(III) ≤1% 10.2 5.7 6.1 11.7
(IV) ≤10% 3.1 3.6 5.5 3.6 2.8 11.8 2.4
(V) >10% 0.4 0.4 0.7 0.5 0.2 2.4 0.3
Base quality, from I–III Q33 Q36 Q35 Q33
Misassembly % of 1-kb chunks, from IV–V 3.5 4.0 6.2 4.1 3.0 14.2 2.7

Scaffold accuracy
Validity at 100 kb, % 99.1 99.5 99.7 99.0 98.8 99.1

An evaluation of human and mouse assemblies is shown. Contigs of size <1 kb were excluded from the analysis. Reference sequences
are described in SI Materials and Methods. Assembly no.: Assemblies 1, 4, and 5 are from the data of this paper and are deposited in
DDBJ/EMBL/GenBank under accession nos. AEKP00000000, AEKQ00000000, and AEKR00000000, respectively. The versions described in
this paper are the first versions, AEKP01000000, AEKQ01000000, and AEKR01000000. For each ambiguity {x1, . . . , xn}, we inserted x1
into the fasta sequence and referred to x2, . . . , xn in a note at the locus. Assemblies 2, 3, and 6 are from refs. 3, 12, and 19).
Completeness: Contigs were aligned to the reference sequence, with each contig assigned to at most one location. The covered fraction
of a genome consists of the fraction of total bases in the reference (exclusive of gaps) that lie under a contig. The captured fraction
consists of those bases that lie within a gap in a scaffold. All other bases are uncaptured. Exon coverage was computed from
RefSeq gene annotations (http://genome.ucsc.edu/cgi-bin/hgTables). Segmental duplication coverage was computed from http://
humanparalogy.gs.washington.edu/build36/oo.weild10kb.join.all.cull.xwparse and http://mouseparalogy.gs.washington.edu/She2008_
download/WGAC.tab.gz. Continuity: We report the N50 sizes of contigs and scaffolds, excluding gaps in the latter case. Contig
accuracy: We first report the fraction of bases labeled as ambiguous (SI Materials and Methods). We then divide the contigs into 1-
kb chunks (as in ref. 9, which, however, used a chunk size of 10 kb). Each chunk is then aligned to the reference sequence using the
Smith–Waterman algorithm, seeded on perfect 100-mer matches, to find the optimal placement, and the number of errors (mismatch
plus indel bases) is computed. (Contigs having no 100-mer match were treated as novel sequence and ignored for purposes of this
analysis. There was <1% of novel sequence in all cases.) The contig is then assigned to one of five mutually exclusive classes on the basis
of its error rate. The percentages of chunks landing in each class are listed. Note that for assembly 1, contig accuracy was calculated
with respect to two reference sequences. Base quality: Inferred Phred quality (20) of bases in chunk classes I–III. Misassembly %: Total
fraction of bases in chunk classes IV–V. Scaffold accuracy: Validity at 100 kb (9): We report the probability that two 100-base sequences
in the assembly, separated by 100 kb, and also present in the reference, have the same orientation and are separated by 100 kb ± 10%.
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semblies. There is an assembly error in 3.0% of the 1-kb chunks,
which is slightly worse than the capillary-based assembly (2.7%)
and much better than the SOAP assembly (14.2%). The long-
range accuracy with ALLPATHS-LG (99.0%) is similar to that
for capillary-based sequencing (99.1%) and is somewhat better
than that obtained with SOAP (98.8%).

Segmental Duplications. Segmental duplications present a special
challenge for de novo genome assembly, even for the capillary-
based assemblies. For both mouse and human, the capillary-
based assemblies cover only ∼60% of the segmental duplications
in the reference sequence. A recent article (13) expressed con-
cern about limitations of massively parallel sequence data be-
cause the SOAP YH human assembly covers only 12% of
segmental duplication.
The ALLPATHS-LG assemblies of both human and mouse

cover ∼40% of the segmental duplications, showing that it is
possible to use massively parallel sequence data to come much
closer to the coverage obtained with capillary-based sequencing.
Nonetheless, the assembly still falls short of the coverage of
segmental duplications obtained with capillary-based sequenc-
ing, and even that coverage falls short of what is truly desired.
Clearly, additional work is needed to represent these biologically
important regions (e.g., refs 22 and 23.).

Understanding Gaps. We next sought to understand the nature of
the gaps in the ALLPATHS-LG assemblies. Roughly three-
quarters of the gaps are captured (that is, lie within a scaffold)
whereas the remaining gaps are not spanned.
As noted above, the majority of the sequence within the gaps

consists of repetitive elements (Table S3). For mouse, LINE
elements are major contributors to gaps: The assembly covers
only 66.7% of the genomic bases in LINE repeats, and 59.9% of
gap bases are in LINE elements. For human, LINE and SINE
elements together play a large role: They account for 61.9% of
gap bases.
Although the majority of the bases in gaps are explained by

long repeats, the majority of captured gaps are small (median
380 bases for human and 200 bases for mouse) and thus do not
consist of long repeats. To better understand captured gaps, we
aligned the reads from the fragment libraries to the reference
sequences. For each gap, we defined the “gap neighborhood” to
be the gap itself together with the 100 bases on each side of the
gap. We calculated the minimum coverage m at any base within
the gap neighborhood. The median value of m was 17 for human
and 20 for mouse (vs. mean fragment read coverage of 38 for
human and 50 for mouse). For each gap neighborhood, we also
calculated the proportion of similarly sized regions in the ge-
nome having lower coverage. If the gap neighborhoods had
typical coverage, the median proportion would be 50%. In fact, it
was 24% for human and 15% for mouse. In short, the gaps have
substantially lower than average coverage—although they have
some sequence coverage (but not enough for ALLPATHS-LG to
assemble across them).

Discussion
High-quality draft genome assemblies of vertebrate genomes have
provided an essential foundation for comparative analysis of
the human genome, as well as for studies of individual organ-
isms. However, it cost tens of millions of dollars each to gener-
ate such genome assemblies with capillary-based sequencing,
limiting the number that could be obtained. In this work, we
demonstrate that it is possible to generate high-quality assemblies
at a cost that is ∼1,000-fold lower by using data from massively
parallel sequencing (Illumina) and the algorithm presented here,
ALLPATHS-LG.
Using ALLPATHS-LG, we created assemblies of the human

and mouse genomes, on the basis of ∼100-fold shotgun coverage

in four library types. The assemblies approach the quality obtained
with capillary-based sequencing: (i) They have good long-range
connectivity, with scaffold lengths of 11.5 and 7.2Mb, respectively.
These values are within a factor of 2 of the sizes for capillary-based
assemblies. (ii) They have good accuracy, with nucleotide accu-
racy of at least 99.95% and assembly accuracy comparable to
capillary-based assemblies. (iii) They have good coverage, with
∼90% coverage of the genome and 95–97% coverage of exonic
sequences. The genomic coverage is lower than for capillary-
based assemblies, but coverage of exonic sequence is comparable.
The missing sequence consists largely of repeat elements, but also
includes some recent duplications (13).
The quality of the ALLPATHS-LG assemblies is considerably

better than that obtained with other recent approaches for as-
sembling massively parallel sequencing data. For example, the
human scaffolds are >25 times longer than those in recently
published assemblies using data from Illumina and 454 sequenc-
ing (12, 24).
We wanted to be certain that the superior performance of the

ALLPATHS-LG algorithm relative to other approaches was not
due simply to differences in the quality of the underlying raw
data (such as the series of innovations in library construction that
we used). To test this, we assembled the same dataset for the
mouse genome with SOAP; we had extensive input from its
authors, who generously carried out experiments to find optimal
parameters for use with their algorithm. The ALLPATHS-LG
assemblies had much greater long-range connectivity and sig-
nificantly higher short-range accuracy then the current version
of SOAP.
A recent critique (13), citing the limitations of the SOAP hu-

man assemblies (12), has raised the concern that it may impossible
to achieve high-quality de novo genome assemblies with massively
parallel sequencing data. The current study indicates that con-
siderably better assemblies can be achieved, through improve-
ments in both algorithms and data. First, we note that the SOAP
assembly for mouse is better than for human—which may be due
to increases in read length and improvements to the SOAP al-
gorithm in the interim. Second, the ALLPATHS-LG assemblies
are much better than the SOAP assemblies and approach the
quality of capillary-based assemblies in many respects. Nonethe-
less, additional improvements will be needed to produce assem-
blies that reach and exceed the quality of assemblies based on long
reads from capillary sequencing.
Because the costs of massively parallel sequencing data are so

low, we used ∼100-fold coverage rather than the ∼10-fold cov-
erage typically used for capillary-based sequencing. The higher
coverage compensated for the shorter length and lower per-base
accuracy of the sequencing reads, as well as for coverage biases.
However, the higher coverage is also potentially enabling. When
we inspect defects in the ALLPATHS-LG assemblies, we find that
in most cases there are enough data at the loci to manually “re-
solve” them. In other words, ALLPATHS-LG is not yet exploiting
the full power of the data. This is a sharp contrast to the lower
coverage used with capillary-based sequencing, where algorithms
were frequently confronted with regions having very low amounts
of data. Thus, we anticipate that an improved version of the al-
gorithm should yield even better results.
With ALLPATHS-LG, we introduced a preliminary syntax for

expressing alternatives in an assembly—for example, TTTT{T,
TT}, denoting five or six Ts. This approach is superior to simply
picking one choice at random, inserting Ns, or assigning a low-
quality score to the bases. By explicitly capturing the alternatives,
the representation makes it possible, in principle, for down-
stream analyses to exploit the additional information.
Computational hardware requirements are an important issue

in large-genome assembly. For mammalian-sized genomes,
ALLPATHS-LG requires ∼3 wk on commodity shared-memory
hardware. SOAP is much faster: It takes ∼3 d on the same hard-
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ware. Thus, for now, ALLPATHS-LG is slower but produces
higher-quality assemblies. We anticipate that with algorithmic
improvements it can be speeded up, although there may be
a trade-off between speed and accuracy.
As sequencing costs drop, investigators will want to sequence

more genomes. To facilitate this work, it is important to have
essentially automated laboratory and computational processes
for producing high-quality genome assemblies. In this work, we
defined a practical sequencing model, on the basis of a relatively
small number of libraries. Similarly, using data from this model,
we designed ALLPATHS-LG to run “out of the box” using de-
fault arguments, rather than requiring “tuning” for each genome;
we have done so in this work.
For widespread application, it will be valuable to optimize the

sequencing model. In particular, it will be valuable to explore the
effects of coverage, insert sizes, and read length; the optimal
values will likely depend on rapidly changing details of the se-
quencing technology, including cost. As an initial step, we ex-
plored the effect of using different coverage levels. Taking the
reads that align to mouse chromosome 1, we performed assem-
blies in which the coverage in fragment reads and/or jumping
reads was reduced by either 25% or 50% (Tables S4 and S5). We
found that that decreasing coverage by half for both read types
reduced contig N50 from 26 to 18 kb and reduced coverage from
93.5 to 92.1%, thus suggesting that higher coverage confers an
advantage in assembly quality, but that lower coverage might be
appropriate in some cases. We note, however, that for de novo
sequencing projects, the true genome size is rarely known ac-
curately, and the yield of valid constructs varies considerably

from library to library (Table 2). Thus, aiming for the bare
minimum of coverage may not be a good strategy at this time.
With continuing improvements in de novo assembly of mas-

sively parallel sequencing data, we are optimistic that it will be
possible to greatly expand the application of genome sequence
analysis, including to the recently proposed goal of sequencing
10,000 vertebrates (25) and to such medical applications as re-
construction of rearranged genomes in human tumors.

Materials and Methods
A detailed description of the algorithms and laboratory methods used in this
work is described in SI Materials and Methods. This description includes
outlines of the molecular biology protocols that we used in sequencing the
human and mouse genomes. The description also includes lane-by-lane in-
formation about the data that were generated using these protocols.
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